Что является мишенью для препаратов антибиотиков

Избирательное действие антибиотиков. Спектр действия

Одной из основных характеристик антибиотиков, определяющей возможность их использования в лечении болезней у людей является их избирательность. Под избирательностью понимаем способность антибиотиков — вызвать гибель одних живых организмов и не действовать на другие. Антибиотик Флеминга (пенициллин) обладал разрушительным избирательным действием по отношению к бактериям и был безвредным для грибов, которые его вырабатывали. Пот отношению к антибиотикам, используемым в лечении инфекций у людей, исследуется их воздействие на организм человека. В этом смысле наибольшей избирательностью (и наименьшей опасностью для человека) обладают антибиотики из группы пенициллина и цефалоспоринов, действующие на компоненты бактерий не имеющие аналогов в организме человека. С другой стороны антибиотики, угнетающие синтез белков или нуклеиновых кислот могут оказывать подобной действие и на организм человека, так как подобные процессы (синтез белков и нуклеиновых кислот) происходят и в нашем организме. Низкая избирательность значительно ограничивает применение соответствующих групп антибиотиков в медицине. Другой важной характеристикой антибиотиков является спектр действия. Спектр действия антибиотика определяет широту его влияния на различные популяции бактерий. Структура и состав различных бактерий чрезвычайно разнообразны и потому некоторые виды бактерий оказываются абсолютно нечувствительными по отношению к некоторым антибиотикам, активным против других бактерий. Чем больше бактерий являются чувствительными к одному определенному антибиотику, тем шире спектр его действия.

Существуют антибиотики широкого и узкого спектра действия и те и другие используются в определенных целях, так как ширина спектра действия, в зависимости от случая, может быть как положительным, так и отрицательным качеством антибиотика.

Структуры бактериальной клетки, служащие мишенями для основных антибактериальных химиотерапевтических препаратов, представлены на рис.

Мишени основных химиотерапевтических препаратов в бактериальной клетке

Задача антибиотика — подавить жизнедеятельность бактерии. Для этого ему необходимо проникнуть в бактериальную клетку, и вступить во взаимодействие с мишенями.

Мишени приложения действия антибиотиков у микроорганизмов довольно разнообразны. Лекарства могут ингибировать синтез клеточной стенки(пенициллины, цефалоспорины, циклосерин, ванкомицин),синтез РНК на уровне РНК-полимеразы( рифампицины), синтез белка на уровне рибосом( стрептомицин, линкомицин, макролиды, аминогликозиды, тетрациклины). Наконец, антибиотики могут нарушать молекулярную организацию и функции клеточных мембран(полимиксины, полиены). Ингибиторами синтеза ДНК на уровне ДНК-матрицы (блеомицин).

Пенициллины, ингибирующие синтез клеточной стенки у размножающихся бактерий, своей мишенью избрали пептидогликановый слой (точнее, ферменты клеточной стенки). Соединение ферментов с антибиотиками приводит к образованию брешей в пептидогликановом слое, через которые в клетку могут проникать молекулы антибиотика.когда пенициллин взаимодействует с ферментами, отмечается расщепление беталактамного кольца и формирование комплекса. В случае использования относительно низких концентраций пенницилина подавляется активность эндопептидазы, что обусловливает образование в клетках поперечных перегородок. Деление таких клеток прекращается, они начинают удлиняться — образуются длинные нитевидные клетки. Более высокие концентрации пенициллина ингибируют активность гликозидазы. В результате появление гигантских змеевидных форм прекращается, и синтез клеточной стенки полностью останавливается.

Полимиксины и полиены повреждают цитоплазматическую мембрану чувствительных бактерий и необратимо связываются с ней. Вступая во взаимодействие с анионным фосфолипидным слоем мембраны, полимексины нарушают осмотический барьер клетки. Вследствие этого наблюдается выход из нее внутриклеточных компонентов и лизис.

Группа антибиотиков, ингибирующих синтез и функции белка рибосом,включает хлорамфеникол( левомицетин), тетрациклины, макролиды. Хлорамфеникол соединяется с 50S-субъединицей рибосом бактерий, блокируя белковый синтез. При достаточной концентрации и при длительной обработке рибосомы разрушаются, происходит освобождение из клетки макромолекул и наступает лизис бактерий.

Аминогликозиды соединяются с белками, входящими в состав 30S-субъединицы рибосом бактерий, вызывая нарушение трансляции и включение в пептидную цепь необычных аминокислот. Решающее значение имеет нарушение механизмов соединения рибосом с т-РНК и формирование дефектных инициативных комплексов, обусловливающие бактерицидное действие этих антибиотиков.

Тетрациклины соединяются с 30S-субъединицами рибосом бактерий, блокируя тем самым белковый синтез. Следует также отметить, что тетрациклины в больших концентрациях могут подавлять синтез белка в животных клетках.

Макролиды, связываясь с 50S-субъединицей рибосом, ингибируют белковый синтез. Они влияют на реакцию транслокации белкового синтеза.

Рифампицин подавляет синтез РНК в результате соединения ДНК-зависимой РНК-полимеразой.

Антибиотики блеомицин, флеомицин ингибируют репликацию ДНК. Наряду с этим могут обусловливать разрывы молекул ДНК, подавление синтеза ферментов и РНК.

ЧИТАЙТЕ ТАКЖЕ:  Препарат дуодарт взаимодействие с антибиотиками

Задача бактерии — противостоять губительному действию антибиотика.

Источник: http://studbooks.net/1916990/meditsina/izbiratelnoe_deystvie_antibiotikov_spektr_deystviya

Механизмы действия антибиотиков на клеточные мишени

Ингибиторы синтеза клеточной стенки. Таким действием обладают b-лактамные антибиотики, к числу которых относятся пенициллины, цефалоспорины, нокардицин А, сульфазецин, тиенамицин и др. Все перечисленные соединения имеют в своем составе b-лактамное кольцо (рис. 18.1). Мишенью этих антибиотиков является бактериальный фермент гликопептидтранспептидаза, который катализирует формирование поперечных сшивок в молекуле муреина. b-Лактамные антибиотики имеют структурное сходство с фрагментом субстрата этого фермента (-D-Аla-D-Аla-OH) и связываются в активном центре транспептидазы таким образом, что b-лактамное кольцо оказывается в непосредственной близости от остатка серина. Гидроксильная группа серина участвует в формировании устойчивой ковалентной связи с атомом углерода нестабильного b-лактамного кольца (рис. 18.1). В результате образуется неактивная ацилированная форма транспептидазы, которая не способна катализировать реакцию транспептидирования (глава 14). Такое ингибирование фермента является необратимым, а действие антибиотиков носит бактерицидный характер: дефектная клеточная стенка не обладает должным запасом прочности и при увеличении клетки в процессе роста или осмотического поступления в нее воды разрушается.

Кроме b-лактамных антибиотиков, нарушение процесса синтеза клеточных стенок бактерий вызывает полипептидный антибиотик бацитрацин А. Показано, что молекула бацитрацина может связывать в тройной комплекс с ионами двухвалентных металлов молекулу фосфорилированного липидного переносчика. В результате не происходит дефосфорилирование липидного переносчика, т. е. регенерация его свободной формы. В таком случае не могут осуществиться все стадии синтеза муреина, в которых задействован липидный переносчик, и не формируется клеточная стенка (бактерицидный эффект).

Следует добавить, что перечисленные антибиотики наиболее активны против грамположительных бактерий, поскольку именно их клеточные стенки содержат большое количество муреина. Для эукариот эти антибиотики малотоксичны, что объясняется отсутствием в их клетках основной мишени — ферментов и других компонентов синтеза муреина.

Антибиотик циклосерин — производное аминокислоты серин подавляет активность двух ферментов, участвующих в синтезе муреина: аланинрацемазы и D-аланил-D-аланинсинтетазы. Он активен против широкого круга бактерий, малотоксичен, но у людей может вызывать расстройства нервной системы.

Мембрано-активные антибиотики. Мишенью этих антибиотиков является, в первую очередь, плазматическая мембрана бактерий. Полимиксины (группа пептидных антибиотиков с циклолинейной структурой) способны связываться с фосфатными группами кардиолипина, фосфатидилэтаноламина и других кислых липидов, входящих в структуру липидного бислоя мембран.

При этом наблюдается нарушение проницаемости мембраны — очень серьезное повреждение, влияющее на весь клеточный метаболизм (в первую очередь, происходит «потеря» ионов, создающих градиент на мембране). Кроме этого, полимиксины активируют фосфолипазы наружной мембраны грамотрицательных бактерий, что приводит к разрушению липидного бислоя. Эти нарушения носят бактерицидный характер, а действие полимиксинов направлено, в первую очередь, против грамотрицательных бактерий, обладающих дополнительной (наружной) мембраной.

Похожим образом действуют на мембраны полиеновые антибиотики (амфотерицин В, нистатин, леворин, трихомицин). Их молекулы содержат сопряженную систему двойных связей, а мишенью действия является мембрана. Полиеновые антибиотики связываются со стеролами особой структуры, которые преобладают в мембранах грибов. В результате в мембранах образуются крупные поры, приводящие к нарушению проницаемости.

Нарушают проницаемость мембран также антибиотики-ионофоры, описанные в главе 4.

Ингибиторы трансляции. К этой группе относится значительное количество антибиотиков (рис. 18.2), среди которых наибольшее распространение имеют тетрациклины, аминогликозидные антибиотики (стрептомицин, канамицины, неомицины, гентамицины), хлорамфеникол, макролидные антибиотики (эритромицины, олеандомицин, лейкомицины, тилозин). Особенностью этих веществ является способность связываться с рибосомами, блокируя синтез белка. Следует отметить, что большинство перечисленных антибиотиков характеризуется избирательностью связывания именно с субъединицами (или их составными частями) 70S-рибосом, присутствующими в клетках прокариот. Поэтому данные антибиотики специфичны по отношению к прокариотам. Их действие носит в основном обратимый характер, и поэтому они обусловливают чаще бактериостатический эффект.

Связываясь с рибосомами, ингибиторы трансляции либо препятствуют взаимодействию с рибосомами аминоацилтранспортных РНК (тетрациклины), либо ингибируют инициацию трансляции (стрепто-мицин), либо ингибируют активность пептидилтрансферазы — структур-ной части 50S-субъединицы рибосомы (хлорамфеникол), либо нарушают процесс транслокации рибосомы (эритромицин) и т. п.

Антибиотик пуромицин имеет структурное сходство с концевым фрагментом акцепторной ветви аминоацил-тРНК, но он значительно меньших размеров. Благодаря этому пуромицин способен быстро связываться с А-участком рибосом (70S и 80S), однако после присоединения к аминогруппе пуромицина пептидного остатка (пептидилтрансферазная реакция) весь комплекс отщепляется от рибосомы из-за отсутствия кодон-антикодонового взаимодействия. Пуромицин обладает высокой токсичностью по отношению к эукариотическим клеткам, поскольку не имеет избирательности связывания с 70S-рибосомами. Этот антибиотик активен против бактерий, простейших, гельминтов, а также некоторых злокачественных опухолей.

ЧИТАЙТЕ ТАКЖЕ:  Препараты для восстановления микрофлоры после антибиотиков

Антибиотики-интеркаляторы. Действие этих антибиотиков основано на способности встраиваться (интеркалировать) в молекулы ДНК. Таким действием обладает, например, актиномицин D(рис. 18.2), адриамицин, дауномицин. Молекула актиномицина, в частности, встраивается своей плоской гетероциклической частью между параллельными плоскостями пар оснований ДНК. Подобным образом ведет себя дауномицин, две молекулы которого интеркалируют своими гетероциклическими ядрами между плоскостями пар оснований G/C. При таком воздействии локально нарушается структура ДНК, что приводит к ингибированию процессов репликации и транскрипции.

Поскольку структура ДНК отличается высокой консервативностью, антибиотики-интеркаляторы активны и в отношении ДНК эукариот, что делает их высокотоксичными. Эти антибиотики находят применение при химиотерапии злокачественных опухолей, клетки которых, как известно, делятся быстрее нормальных, а значит, и матричные процессы, на которые воздействуют названные антибиотики, в них более активны.

ДНК-тропные антибиотики. Эти антибиотики взаимодействуют с молекулами ДНК, приводя к их разрушению. Классическим примером служат митомицины (А, В, С), а также порфиромицин. Действие названных антибиотиков осуществляется двумя путями: во-первых, модификацией пуриновых оснований, во-вторых, формированием поперечных сшивок между антипараллельными цепями ДНК. Как результат, происходит подавление процесса репликации, возникают ошибки репликации, а также происходят разрывы молекулы ДНК. Еще один тип антибиотиков — блеомицины вызывают многочисленные одно- и двухнитевые разрывы в молекулах ДНК.

Большинство ДНК-тропных антибиотиков высокотоксичны и используются в качестве противоопухолевых препаратов.

Ингибиторы транскрипции. Кроме уже названных антибиотиковинтеркаляторов, транскрипцию подавляют рифамицины. Эти антибиотики взаимодействуют с ДНК-зависимыми РНК-полимеразами прокариот, в частности с b-субъединицей минифермента. Связывание носит нековалентный характер, однако оказывается довольно прочным, из-за чего нарушается процесс синтеза цепей РНК.

Ингибиторы ферментативных процессов. В качестве таких антибиотиков выступают уже рассмотренные выше пенициллины, цефалоспорины, циклосерин, хлорамфеникол и др. Кроме того, следует отметить антимицин, подавляющий процесс транспорта электронов между цитохромами в дыхательной цепи, олигомицин, связывающийся с ферментами, обусловливающими сопряжение окисления субстратов с фосфорилированием, новобиоцин, являющийся ингибитором фермента ДНК-гиразы (принимает участие в репликации), актиномицин А, ингибирующий активность цитохром С-редуктазы.

Источник: http://studopedia.ru/17_126494_mehanizmi-deystviya-antibiotikov-na-kletochnie-misheni.html

Что является мишенью для препаратов антибиотиков

Мишени воздействия и зависимости между структурой и активностью антибиотиков

Институт кибернетики им. Глушкова НАН Украины,

Харьковский институт микробиологии и иммунологии им. И. И. Мечникова

Для выяснения механизмов действия лекарств на молекулярном уровне необходимо выявить минимальные условия узнавания как основу понимания того, как разнообразный набор химических структуp может активировать один и тот же рецептор. Молекулярное узнавание решающим образом зависит от трехмерного распределения электронной плотности в молекуле, и логической целью попыток вывести условия узнавания является определение конформации лекарства в комплексе с рецептором. Ниже на примере хорошо известных антибиотиков — производных триметоприма и b-лактамных препаратов — кратко затронуты вопросы, в какой степени понятна сейчас связь между структурой и активностью на уровне молекулярных мишеней взаимодействия и как зависимости активности от структурных особенностей могут быть использованы для конструирования перспективных противомикробных препаратов.

Антимикробная активность всех беталактамов обусловлена двумя обстоятельствами: высокой реакционной способностью беталактамного кольца — при его раскрытии ацилируются ОН- или NH- группы, и сходством консервативной части молекулы беталактамного антибиотика с одним из переходных состоянии конформации D-аланил-D-аланинового фрагмента пептидных цепочек пептидогликана, попадающего в активный центр транспептидаз и D-аланинкарбоксипептидаз. Все внедренные в клинику беталактамы подавляют синтез пептидогликана за счет инактавации транспептидаз, участвующих в синтезе полимера. Однако множественность этих ферментов обуславливает и множественность мишеней для беталактамов в структурах. Среди энзимов — объектов воздействия триметоприма и b-лактамных препаратов — пространственная структура изучена только у двух: дигидрофолатредуктазы кишечной палочки и карбоксипептидазы/тpaнcпeптидазы Streptomices R 61 (Cpase/TRase S. R 61). Наибольший прогресс достигнут в изучении пространственной структуры дигидрофолатредуктазы, являющейся объектом воздействия триметоприма, что находит теперь практическое применение и при конструировании лекарств. Сравнительно хорошо проанализирована также и структура мишеней воздействия b-лактамных препаратов. Среди них в качестве модельного энзима подробно изучена карбоксипептидаза/транспептидаза Streptomices R 61. В качестве энзимов, вступающих в реакцию с b-лактамом, кроме карбоксипептидазы/транспептидазы, известна также b-лактамаза. Все эти энзимы имеют в активном центре серин. Третьим от серина вдоль аминокислотной цепи всегда следует лизин, во многих случаях за лизином следует фенилаланин. Сходный характер первичной структуры является также общим для многих пенициллинсвязывающих белков, что дает основание предположить генетическую общность энзимов, вступающих в реакцию с b-лактамом.

ЧИТАЙТЕ ТАКЖЕ:  Противогрибковый препарат после антибиотиков

Следует отметить, что энзим карбоксилпептидаза/транспептидаза Streptomiсes R 61 является производимым вне клетки растворимым белком, который сравнительно легко кристаллизуется и потому может быть исследован с помощью рентгеноструктурного анализа. Однако этот энзим является модельной системой, а не подлинной мишенью, подлежащей уничтожению b-лактамным препаратом. Подлинные же энзимы — объекты воздействия b-лактамных препаратов — ввиду их низкой растворимости и большой молекулярной массы, пока не удается закристаллизовать, а следовательно и расшифровать их с помощью рентгеноструктурного анализа. Таким образом, прямые экспериментальные исследования структуры мишеней воздействия антибиотиков пока что крайне ограничены. Отсутствие детальных данных о пространственной структуре молекулярных мишеней существенно сдерживает процесс выявления зависимостей структура—активность и последующее конструирование лекарств. В этой ситуаций возрастает роль исследований структуры мишеней путем воздействия на них ряда химических соединений известной структуры и последующего анализа связей структура—уровень бактерицидного действия. Выявление таких связей позволяет составить определенное представление о структуре мишеней и, основываясь на такой гипотетической модели структуры мишени, осуществить синтез перспективных лекарственных средств.

Активность антибиотиков почти во всех случаях измеряется величиной бактерицидного действия, а именно — минимальной ингибирующей концентрацией — МИК (или МІС). Этот показатель зависит не только от способности препарата воздействовать на мишень, но также и от влияния таких факторов, как проницаемость мембраны для препарата, его активация ферментами и др. При осуществлении поиска эффективных лекарственных препаратов МИК имеет первостепенное значение. Однако для того, чтобы по силе бактерицидного действия можно было судить об эффективности воздействия антибиотика непосредственно на мишень (то есть о воздействии как акте бимолекулярного узнавания); влияние барьера проницаемости и инактивирующих ферментов должно быть учтено. Действительно, как показали сравнительные исследования зависимостей между сродством b-лактамных препаратов с ПСБ и величиной их бактерицидного действия в отношении обычного штамма Е. соli (штамм LD 2) и штамма мутанта (штамм PG 12), лишенного b-лактамазы и барьера проницаемости, в первом случае имела место слабая корреляция (r = 0,613) между МИК и І50 (концентрацией, обеспечивающей 50-процентное ингибирование ПСБ 1, 2 и 3), тогда как во втором случае, у штамма PG 12, взаимосвязь этих параметров оказалась очень сильной: коэффициент корреляции r составил 0,941 (рис. 1). Обращает на себя внимание интересный факт, иллюстрируемый последней зависимостью. Как известно, цефалоспорины подвергались постоянному улучшению путем модификации его химической структуры, и теперь имеется несколько поколений этого препарата. Если рассматривать этот процесс с точки зрения сродства препарата к ПСБ, то оказывается, что сродство цефазолина, представителя первого поколения, относительно низко (показатель І50 составляет около 1 мкг/мл). У препаратов второго поколения, например, у цефуроксима, сродство на порядок выше. Что касается препаратов третьего поколения (например цефотаксим), то их сродство еще на порядок выше. Таким образом, усиление бактерицидного действия препаратов цефалоспоринового ряда в отношении грамотрицательных бактерий вызывается повышением сродства к ПСБ — параметра, отражающего именно структурные особенности, необходимые для эффективного молекулярного взаимодействия. А значит сила бактерицидного действия в общем может быть объяснена ингибированием ПСБ. Однако детальное содержание этого взаимодействия на молекулярном уровне все еще остается не выясненным. Можно полагать, что, благодаря прогрессу в области генной инженерии, гены, отвечающие за синтез ПСБ, станет возможным подвергать клонированию и что отдельные из ПСБ удастся закристаллизовать. Тот факт, что была осуществлена кристаллизация ПСБ 1В кишечной палочки — белка с молекулярной массой около 90 000 — дает основания рассчитывать на дальнейший прогресс в этой области. Можно ожидать, что и рентгеноструктурный анализ белковых структур, благодаря совершенствованию методов расшифровки и распространению суперкомпьютеров, значительно ускорится.

Источник: http://provisor.com.ua/archive/1999/N1/targets.php

Ссылка на основную публикацию