Классификация антибиотиков по группам таблица

ВАЖНО! Для того, что бы сохранить статью в закладки, нажмите: CTRL + D

Задать вопрос ВРАЧУ, и получить БЕСПЛАТНЫЙ ОТВЕТ, Вы можете заполнив на НАШЕМ САЙТЕ специальную форму, по этой ссылке >>>

Детский врач

Медицинский сайт для студентов, интернов и практикующих врачей педиатров из России, Украины! Шпаргалки, статьи, лекции по педиатрии, конспекты, книги по медицине!

Классификация антибиотиков. Характеристика

    Вы студент медик? Интерн? Детский врач? Добавьте наш сайт в социальные сети!

Противомикробные лекарственные средства относятся к наиболее распространенному классу лекарственных препаратов, как у взрослых, так и у детей. Это связанно со значительной распространенностью инфекционных заболеваний, разнообразием их клинических проявлений и разной природой чувствительности к антибактериальным препаратам.

Быстрое размножение микроорганизмов вызывает селекцию их лекарственной стойкости к антибактериальным препаратам. Нерациональное лечение инфекций усиливает этот процесс, что приводит к формированию резистентности микроорганизмов к наиболее распространенным классам антибиотиков и антибактериальных средств.

Все современные противомикробные средства разделяют на химиотерапевтические, антисептические и дезинфикационные.

В большую группу химиотерапевтических противомикробных средств входят антибиотики и синтетические антибактериальные препараты.

Антибиотики и синтетические антибактериальные препараты – это вещества, которые выборочно угнетают жизнедеятельность микроорганизмов – бактерий. Под выборочным действием этих препаратов понимают активность только к определенным родам и видам микроорганизмов с сохранением нормальной жизнедеятельности клеток человека.

Сейчас к антибиотикам относят все естественные и полусинтетические препараты, созданные из веществ микробного, растительного и животного происхождения. Соответственно этому различают антибиотики, которые являются продуктами жизнедеятельности плесневых грибов (пенициллины, цефалоспорины), лучистых грибов (стрептомицин, тетрациклин, хлорамфеникол), бактерий (грамицидин), растений (умкалор, биопарокс, новоиманин) и другие.

Полусинтетические антибиотики – это продукты модификации естественных молекул (амоксициллин, цефазолин и др.).

Синтетические антибактериальные препараты в наше время занимают важное место в клинической медицине. В эту группу входят следующие классы антибактериальных препаратов: хинолоны (фторхинолоны), нитромидазолы, нитрофураны, сульфаниламиды и ко-тримоксазол, нитроксолин, диоксидин.

По химической структуре выделяют следующие классы антибактериальных средств:

  • пенициллины, в том числе ингибиторзащищенные;
  • цефалоспорины;
  • карбапенемы;
  • монобактамы;
  • ингибиторы бета-лактамаз (применяются только в сочетании с бета-лактамами).

2.Макролиды (в том числе и азалиды).

11.Сульфаниламиды и ко-тримоксазол.

12.Препараты других групп, разных по химическому строению (рифамицин, спектиномицин, фосфомицин, фузидиева кислота, диоксидин, нитроксолин).

13.Группа противотуберкулезных препаратов.

По механизму действия антибактериальные средства делят на 4 основные группы:

1.Ингибиторы синтеза клеточной стенки микроорганизмов:

2. Препараты, разрушающие молекулярную организацию и функцию цитоплазматических мембран:

  • полимикосины;
  • некоторые противогрибковые средства.

3. Антибиотики, которые угнетают синтез белка:

  • аминогликозиды;
  • макролиды;
  • тетрациклины;
  • группа левомицетина (хлорамфеникола);
  • линкозамиды (линкозамины).

4. Лекарственные средства, нарушающие синтез нуклеиновых кислот:

  • ансамакролиды (рифамицины);
  • фторхинолоны;
  • сульфаниламидные препараты, триметоприм, нитромидазолы.

В зависимости от взаимодействия антибиотика с микроорганизмом выделяют бактерицидные и бактериостатические антибиотики. См. Таблица 1.

Таблица. Бактерицидные и бактериостатические антибиотики (Михайлов И.Б., Маркова И.В., 2002).

Как видно в таблице, антибиотики, которые нарушают синтез и функцию микробной стенки, действуют преимущественно бактерицидно, полностью уничтожая возбудителя заболевания. Это очень важно для лечения тяжелых инфекций, особенно у детей с ослабленным иммунитетом.

При назначении бактериостатических антибактериальных средств происходит только угнетение распределения микроорганизмов, причем у детей с ослабленным иммунитетом после отмены препарата этой группы размножение микроорганизмов может возобновиться, и это приведет к рецидиву и хронизации процесса. Для практикующего врача важно также знать спектр противомикробного действия антибиотика, поскольку выбор препарата (часто эмпиричный) проводится с его учетом.

По спектру действия выделяют следующие группы антибиотиков:

  1. Препараты, которые действуют преимущественно на грамположительные и грамотрицательные кокки (стафилококки, стрептококки, менингококки, гонококки), некоторые грамположительные микроорганизмы (коринобактерии, клостридии). К этим препаратам относят: бензилпенициллин, бицилины, феноксиметилпенициллин, пенициллиназостойкие пенициллины (оксациллин и его аналоги), цефалоспорины 1 поколения, макролиды, ванкомицин, линкомицин.
  2. Антибиотики широкого спектра действия, активные в отношении грамположительных и грамотрицательных палочек: хлорамфеникол, тетрациклин, аминогликозиды, полусинтетические пенициллины широкого спектра действия 3-го класса (ампицилин, амоксициллин, амоксициллин/клавуланат), цефалоспорины 2 поколения.
  3. Антибиотики с преимущественной активностью к грамотрицательным палочкам: полимиксины, цефалоспорины 3 поколения.
  4. Противотуберкулезные антибиотики: изониазид, метазид, парааминосалициловая кислота (ПАСК), пиразинамид, рифабутин, рифампицин, стрептомицин, фтивазид, циклосерин, этамбутол, этионамид.
  5. Противогрибковые антибиотики: нистатин, леворин, гризеофульвин, амфотерцин В, итраконазол, кетоконазол, клотримазол, миконазол, флуконазол, флуцитозин.

Приведенные выше классификации антибактериальных средств помогают врачу-клиницисту в выборе антибиотика и других антибактериальных средств в каждом конкретном случае инфекции. При этом обязательно учитывается фармакодинамика и фармакокинетика препарата, а также индивидуальные особенности больного ребенка (возраст, условия заболевания, состояние иммунитета, сопутствующая патология и др.).

Источник: http://detvrach.com/facultet/farmakologia/klassifikatsiya-antibiotikov-harakteristika/

КЛАССИФИКАЦИЯ АНТИБИОТИКОВ

ТОО «РЕСПУБЛИКАНСКИЙ ЦЕНТР ИННОВАЦИОННЫХ

ТЕХНОЛОГИЙ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ И НАУКИ»

Западно-Казахстанский государственный медицинский

Университет имени Марата Оспанова

АНТИМИКРОБНОЙ ТЕРАПИИ И АНТИБИОТИКОРЕЗИСТЕНТНОСТИ БАКТЕРИЙ

УДК 576.8:615.331:616.013 (075)

Н.М. Бисенова —руководитель микробиологической лаборатории Национального научного медицинского центра, доктор биологических наук, профессор;

Н.М. Мавлюдова — руководитель кафедры фармакологии Западно-Казахстанского государственного медицинского университета имени Марата Оспанова, доктор медицинских наук, профессор.

У 69 Б.С. Урекешов. Микробиологические основы антимикробной терапии и антибиотикорезистентности бактерий. —Учебное пособие. Актобе.2009.102 с. ISBN 9965-15-732-4.

В учебном пособии изложены современные принципы классификации антибиотиков и механизмы их действия на микроорганизмы. Подробно описаны методы определения чувствительности бактерий к антибиотикам. Представлены современные научные данные о механизмах возникновения антибиотикорезистентности у разных групп микроорганизмов, а также методы борьбы с антибиотикорезистентностью и основные принципы рациональной антибиотикотерапии.

Учебное пособие предназначено студентам всех факультетов, может быть использовано семейными врачами, хирургами, инфекционистами, эпидемиологами и врачами других медицинских специальностей, занимающимися вопросами антибактериальной терапии.

Утверждено и разрешено к печати решением рабочей комиссии ТОО «Республиканский центр инновационных технологий медицинского образования и науки». Протокол № 9 от « 03 » июня 2009 г.

4101000000

Список сокращений. 4

Классификация антибиотиков. 7

Важнейшие группы антибиотиков и их применение 11

Методы определения чувствительности микроорганизмов

к антибиотикам. 20

Ускоренные методы определения чувствительности микробов

к антибиотикам. 35

Определение концентраций антибиотиков в жидкостях и тканях

ЧИТАЙТЕ ТАКЖЕ:  Цефтриаксон относится группе антибиотиков

организма, как показатель эффективности антибиотикотерапии 40

Антибиотикорезистентность — глобальная проблема здравоохранения 47

Микробиологические и молекулярно-генетические аспекты

Механизмы устойчивости к антибактериальным препаратам

отдельных групп микроорганизмов. 56

Стратегия и тактика профилактики развития устойчивости

микроорганизмов к антибактериальным препаратам 81

Методы борьбы с антибиотикорезистентностью. 83

Основные принципы рациональной антибиотикотерапии 85

Практические рекомендации. 90

Тестовые задания. 91

Список использованной литературы. 98

ЕД Единица действия

МКГ/МЛ Микрограмм на миллилитр

ВИЧ Вирус иммунодефицита человека

АБП Антибактериальный препарат

МПК Минимальная подавляющая концентрация

МИК Минимальная ингибирующая концентрация

МБК Минимальная бактерицидная концентрация

КОЕ/мл Колониеобразующая единица в одном миллилитре

АГВ Агар Гивенталя — Ведьминой

МПА Мясопептонный агар

АБР Антибактериальная резистентность

БЛРС Бета-лактамазы расширенного спектра

ПСБ Пенициллинсвязывающий белок

МРSA Метициллинрезистентный Staphylococcus aureus

АМФ Аминогликозидмодифицирующие ферменты

ГВЗ Гнойно-воспалительные заболевания

В общей медицине под термином «микробы» понимают бактерии, вирусы, риккетсии, микоплазмы, простейшие и др. Соответственно антимикробные препараты, оказывающие губительное действие на указанных возбудителей, обозначают как антибактериальные, противовирусные, противориккетсиозные, противотуберкулёзные и т.д.

В широком смысле АНТИБИОТИКИ – это от греч. аnti — против, bios – жизнь химиотерапевтические вещества, образуемые микроорганизмами и получаемые из тканей растений и животных, а также их производные и синтетические аналоги, избирательно подавляющие возбудителей инфекционных болезней или развитие злокачественных опухолей.

Для удобства выделяют специальные группы антибиотиков и препаратов, обладающих антибиотикоподобным действием (антигельминтные, антигрибковые, антипротозойные и др.). Поскольку в клиниках общего профиля врачи чаще имеют дело с бактериальными инфекциями, основное внимание мы уделили антибиотикам.

Описано более 6 тысяч природных и десятки тысяч полусинтетических производных антибиотиков, однако наибольшее значение в медицинской практике имеют около 50 антибиотиков, выпускаемых в разнообразных лекарственных формах, и предназначенных для различных целей.

История антибиотиков насчитывает чуть более 70 лет, хотя роль микроорганизмов в развитии инфекционных заболеваний известна уже со второй половины XIX века. Термин "антибиотик" ввел в обращение американский микробиолог З. Ваксман, получивший в 1952 году Нобелевскую премию за открытие стрептомицина. В 1930-е годы А. Флеминг обнаружил, что плесень, случайно попавшая на поверхность среды с культурой стафилококка, как бы растворила ее. Стало очевидным, что плесень вырабатывает какое-то удивительное вещество, с огромной силой, действующее на бактерии. Это гипотетическое вещество Флеминг назвал пенициллином, так как его продуцировали грибы рода Penicillium notatum. В 1929 году он опубликовал свое открытие, а в 1936 — рассказал о нем на II Международном конгрессе микробиологов. Однако научная общественность осталась к этому равнодушной.

Дальнейшая разработка пенициллина связана с работой, так называемой Оксфордской группы, во главе которой стояли Хоуард Флори и Эрнст Чейн. Э. Чейн занимался выделением пенициллина, а Х. Флори — испытанием его на животных. В результате был получен малотоксичный и эффективный пенициллин. 12 февраля 1941 года пенициллин был впервые применен для лечения человека. У пенициллина оказалось столько достоинств, что он до сих пор широко применяется в медицинской практике. В СССР первый пенициллин получен 3.В. Ермольевой и Т. И. Балезиной с сотрудниками в 1942 г. из гриба Penicillium crustosum.

Другой антибиотик, цефалоспорин, выделенный в 1945 году из сточных вод на острове Сардиния, дал жизнь новой группе полусинтетических антибиотиков — цефалоспоринам, оказывающим сильнейшее антибактериальное действие. Цефалоспоринов получено уже более 100. Некоторые из них способны убивать и грамположительные и грамотрицательные микроорганизмы.

Массовое применение антибиотиков в течение десятилетий в мировом масштабе в комплексе с другими, в том числе санитарно-гигиеническими мероприятиями привело к значительному снижению заболеваемости многими инфекционными болезнями и смертности от них. Антибиотики активны в отношении различных грамположительных (микобактерий туберкулеза, стафилококков, стрептококков и др.) и грамотрицательных (бактерий группы кишечной палочки, гонококков, сальмонелл, дизентерийных бактерий, протея, синегнойных палочек и др.) бактерий, возбудителей чумы, сибирской язвы, бруцеллеза, туляремии, риккетсиозов, патогенных грибков, вызывающих микозы человека и животных, некоторых простейших. Активных противовирусных препаратов среди антибиотиков пока не обнаружено. В ряде случаев антибиотики применяют с целью предупреждения угрожающей инфекции невирусного генеза до развития клинических симптомов заболевания. Их назначают для предупреждения бленнореи у новорожденных, гнойных осложнений обширных ран, заболеваний при контакте медперсонала и окружающих с больным чумой, лабораторного инфицирования, развитии бактериальных осложнений вирусных инфекций, а также при предоперационной подготовке, операциях на сердце и сосудах, органах желудочно-кишечного тракта и др.

Основной проблемой, препятствующей успеху лечения антибиотиками, является устойчивость (резистентность) к ним микроорганизмов. Широкое распространение устойчивых форм микроорганизмов, прежде всего к пенициллину, стрептомицину, тетрациклинам, обусловливает необходимость внедрения в практику новых эффективных препаратов, а также рационального применения на основе предварительной идентификации выделенных возбудителей заболевания и определения их чувствительности к антибиотикам (антибиотикограмма).

Актуальность проблемы антибиотикотерапии и антибиотикопрофилактики связана также с неуклонно расширяющимся необоснованным, не рациональным, порой малоэффективным и вредным для организма использованием антибактериальных препаратов. Одной из причин этого, на наш взгляд, является недостаточная информированность и внимание к сложной проблеме со стороны клиницистов различного профиля. Учебники микробиологии и фармакологии, в соответствии с программами преподавания предметов студентам и врачам-курсантам факультетов повышения квалификации, дают весьма скудную, неполную, порой устаревшую информацию об этой глобальной проблеме. В связи с этим настоящее пособие имеет целью расширение и дополнение теоретических, лабораторных и практических аспектов использования антимикробных препаратов.

По способу получения антибиотики делят на:

3 полусинтетические (на начальном этапе получают естественным путем, затем синтез ведут искусственно).

Антибиотики по происхождению делят на следующие основные группы:

1. синтезируемые грибами (бензилпенициллин, гризеофульвин, цефалоспорины и др.);

2. актиномицетами (стрептомицин, эритромицин, неомицин, нистатин и др.);

3. бактериями (грамицидин, полимиксины и др.);

4. животными (лизоцим, экмолин и др.);

5. выделяемые высшими растениями (фитонциды, аллицин, рафанин, иманин и др.);

6. синтетические и полусинтетические (левомецитин, метициллин, синтомицин ампициллин и др.)

Антибиотики по направленности (спектру) действия относят к следующим основным группам:

ЧИТАЙТЕ ТАКЖЕ:  Антибиотики группы фторхинолонов цефалоспоринов

1) активные преимущественно в отношении грамположительных микроорганизмов, главным образом антистафилококковые, — природные и полусинтетические пенициллины, макролиды, фузидин, линкомицин, фосфомицин;

2) активные в отношении как грамположительных, так и грамотрицательных микроорганизмов (широкого спектра действия) — тетрациклины, аминогликозиды, левомицетин (хлорамфеникол), полусинтетические пенициллины и цефалоспорины;

3) противотуберкулезные — стрептомицин, канамицин, рифампицин, биомицин (флоримицин), циклосерин и др.;

4) противогрибковые — нистатин, амфотерицин В, гризеофульвин и др.;

5) действующие на простейших – доксициклин, клиндамицин и мономицин;

6) действующие на гельминтов — гигромицин В, айвермектин;

7) противоопухолевые — актиномицины, антрациклины, блеомицины и др.;

8) противовирусные препараты – ремантадин, амантадин, азидотимидин, видарабин, ацикловирин и др.

9) иммуномодуляторы – циклоспорин антибиотик.

По спектру действия – числу видов микроорганизмов, на которые, действуют антибиотики:

· препараты влияющие преимущественно на грамположительные бактерии (бензилпенициллин, оксациллин, эритромицин, цефазолин);

· препараты влияющие преимущественно на грамотрицательные бактерии (полимиксины, монобактамы);

· препараты широкого спектра действия, действующие на грамположительные и грамотрицательные бактерии (цефалоспорины 3-го поколения, макролиды, тетрациклины, стрептомицин, неомицин);

Антибиотики относят к следующим основным классам химических соединений:

1. бета-лактамные антибиотики, основу молекулы составляют бета-лактамное кольцо: природные (бензилпенициллин, феноксиметил-пенициллин), полусинтетические пенициллины (действующие на стафилококки — оксациллин, а также препараты широкого спектра действия — ампициллин, карбенициллин, азлоциллин, паперациллин и др.), цефалоспорины — большая группа высокоэффективных антибиотиков (цефалексин, цефалотин, цефотаксим и др.), обладающих различным спектром антимикробного действия;

2. аминогликозиды содержат аминосахара, соединенные гликозидной связью с остальной частью (агликоновым фрагментом), молекулы — природные и полусинтетические препараты (стрептомицин, канамицин, гентамицин, сизомицин, тобрамицин, нетилмицин, амикацин и др.);

3. тетрациклины природные и полусинтетические, основу их молекулы составляют четыре конденсированных шестичленных цикла — (тетрациклин, окситетрациклин, метациклин, доксициклин);

4. макролиды содержат в своей молекуле макроциклическое лактоновое кольцо, связанное с одним или несколькими углеводными остатками, — (эритромицин, олеандомицин — основные антибиотики группы и их производные);

5. анзамицины имеют своеобразную химическую структуру, в которую входит макроциклическое кольцо (наиболее важное практическое значение имеет рифампицин — полусинтетический антибиотик);

6. полипептиды в своей молекуле содержат несколько сопряжённых двойных связей — (грамицидин С, полимиксины, бацитрацин и др.);

7. гликопептиды (ванкомицин, тейкопланин и др.);

8. линкозамиды — клиндамицин, линкомицин;

9. антрациклины — одна из основных групп противоопухолевых антибиотиков: доксорубицин (адриамицин) и его производные, акларубицин, даунорубицин (рубомицин) и др.

По механизму действия на микробные клетки антибиотиков разделяют на бактерицидные (быстро приводящие к гибели клеток) и бактериостатические (задерживающие рост и деление клеток) (таблица 1)

Таблица 1. — Типы действия антибиотиков на микрофлору.

Источник: http://lektsii.org/9-36027.html

Критерии классификации антибиотиков

1. Антибиотики — группа соединений природного происхождения или их полусинтетических и синтетических аналогов, обладающих антимикробным или противоопухолевым действием.

К настоящему времени известно несколько сотен подобных веществ, но лишь немногие из них нашли применение в медицине.

2. В основу классификации антибиотиков также положено несколько разных принципов.

По способу получения их делят:

• полусинтетические (на начальном этапе получают естественным путем, затем синтез ведут искусственно).

• по преимуществу актиномицеты и плесневые грибы;

• высшие растения (фитонциды);

• ткани животных и рыб (эритрин, эктерицид).

По направленности действия:

По спектру действия — числу видов микроорганизмов, на которые действуют антибиотики:

• препараты широкого спектра действия (цефалоспорины 3-го поколения, макролиды);

• препараты узкого спектра действия (циклосерин, линкомицин, бензилпенициллин, клиндамицин). В некоторых случаях могут быть предпочтительнее, так как не подавляют нормальную микрофлору.

3. По химическому строению антибиотики делятся:

Основу молекулы бета-лактамных антибиотиков составляет бета-лактамное кольцо. К ним относятся:

группа природных и полусинтетических антибиотиков, молекула которых содержит 6-аминопенициллано-вую кислоту, состоящую из 2 колец — тиазолидонового и бета-лактамного. Среди них выделяют:

• биосинтетические (пенициллин G — бензилпенициллин);

• аминопенициллины (амоксициллин, ампициллин, бекампи-циллин);

• полусинтетические "антистафилококковые" пенициллины (оксациллин, метициллин, клоксациллин, диклоксациллин, флуклоксациллин), основное преимущество которых — устойчивость к микробным бета-лактамазам, в первую очередь стафилококковым;

• цефалоспорины — это природные и полусинтетические антибиотики, полученные на основе 7-аминоцефалоспориновой кислоты и содержащие цефемовое (также бета-лактамное) кольцо, т. е. по структуре они близки к пенициллинам. Они делятся на иефалоспорины: 1-го поколения — цепорин, цефалотин, цефалексин;

• 2-го поколения — цефазолин (кефзол), цефамезин, цефаман-дол (мандол);

• 3-го поколения — цефуроксим (кетоцеф), цефотаксим (кла-форан), цефуроксим аксетил (зиннат), цефтриаксон (лонга-цеф), цефтазидим (фортум);

• 4-го поколения — цефепим, цефпиром (цефром, кейтен) и др.;

• монобактамы — азтреонам (азактам, небактам);

• карбопенемы — меропенем (меронем) и имипинем, применяемый только в комбинации со специфическим ингибитором почечной дегидропептидазы циластатином — имипинем/цилас-татин (тиенам).

Аминогликозиды содержат аминосахара, соединенные глико-зидной связью с остальной частью (агликоновым фрагментом) молекулы. К ним относятся:

• синтетические аминогликозиды — стрептомицин, гентамицин (гарамицин), канамицин, неомицин, мономицин, сизомицин, тобрамицин (тобра);

• полусинтетические аминогликозиды — спектиномицин, амика-цин (амикин), нетилмицин (нетиллин).

Основу молекулы тетрациклинов составляет полифункциональное гидронафтаценовое соединение с родовым названием тетрациклин.Среди них имеются:

• природные тетрациклины — тетрациклин, окситетрациклин (клинимицин);

• полусинтетические тетрациклины — метациклин, хлортетрин, доксициклин (вибрамицин), миноциклин, ролитетрациклин. Препараты группы макролидв содержат в своей молекуле мак-роциклическое лактоновое кольцо, связанное с одним или несколькими углеводными остатками. К ним относятся:

К линкозамидам относятся линкомицин и клиндамицин. Фармакологические и биологические свойства этих антибиотиков очень близки к макролидам, и, хотя в химическом отношении это совершенно иные препараты, некоторые медицинские источники и фармацевтические фирмы — производители хими-опрепаратов, например делацина С, относят линкозамины к группе макролидов.

Препараты группы гликопептидов в своей молекуле содержат замещенные пептидные соединения. К ним относятся:

• ванкомицин (ванкацин, диатрацин);

Препараты группы полипептидов в своей молекуле содержат остатки полипептидных соединений, к ним относятся:

• полимиксины М и В;

Препараты группы поливное в своей молекуле содержат несколько сопряженных двойных связей. К ним относятся:

К антрациклиновым антибиотикам относятся противоопухолевые антибиотики:

Есть еще несколько достаточно широко используемых в настоящее время в практике антибиотиков, не относящихся ни к одной из перечисленных групп: фосфомицин, фузидиевая кислота (фузидин), рифампицин.

В основе антимикробного действия антибиотиков, как и других химиотерапевтических средств, лежит нарушение мгтабо-лизма микробных клеток.

4. По механизму антимикробного действия антибиотики можно разделить на следующие группы:

• ингибиторы синтеза клеточной стенки (муреина);

• вызывающие повреждение цитоплазматической мембраны;

• подавляющие белковый синтез;

• ингибиторы синтеза нуклеиновых кислот.

К ингибиторам синтеза клеточной стенки относятся:

• бета-лактамные антибиотики — пенициллины, цефалоспори-ны, монобактамы и карбопенемы;

• гликопептиды— ванкомицин, клиндамицин.

Механизм блокады синтеза бактериальной клеточной стенки ванкомицином. отличается от такового у пенициллинов и це-фалоспоринов и соответственно не конкурирует с ними за места связывания. Поскольку пептидогликана нет в стенках животных клеток, то эти антибиотики обладают очень низкой токсичностью для макроорганизма, и их можно применять в высоких дозах (мегатерапия).

К антибиотикам, вызывающим повреждение цитоплазматической мембраны (блокирование фосфолипидных или белковых компонентов, нарушение проницаемости клеточных мембран, изменение мембранного потенциала и т. д.), относятся:

• полиеновые антибиотики — обладают ярко выраженной противогрибковой активностью, изменяя проницаемость клеточной мембраны путем взаимодействия (блокирования) со стероидными компонентами, входящими в ее состав именно у грибов, а не у бактерий;

Самая многочисленная группа антибиотиков — подавляющие белковый синтез. Нарушение синтеза белка может происходить на всех уровнях, начиная с процесса считывания информации с ДНК и кончая взаимодействием с рибосомами — блокирование связывания транспортной т-РНК с ЗОБ-субъединицами рибосом (аминогликозиды), с 508-субъединицами рибосом (макро-лиды) или с информационной и-РНК (на 308-субъединице рибосом — тетрациклины). В эту группу входят:

• аминогликозиды (например, аминогликозид гентамицин, угнетая белковый синтез в бактериальной клетке, способен нарушать синтез белковой оболочки вирусов и поэтому может обладать противовирусным действием);

• хлорамфеникол (левомицетин), нарушающий синтез белка микробной клеткой на стадии переноса аминокислот на рибосомы.

Ингибиторы синтеза нуклеиновых кислот обладают не только антимикробной, но и цитостатической активностью и поэтому используются как противоопухолевые средства. Один из антибиотиков, относящихся к этой группе, — рифампицин — инги-бирует ДНК-зависимую РНК-полимеразу и тем самым блокирует синтез белка на уровне транскрипции.

Пигменты бактерий. Виды пигментов. Функции пигментов бактерий.

Колонии многих бактерий могут быть ярко окрашены, что связано с выделением окрашивающего вещества в среду либо окраской самих бактерий. Пигменты бактерий представлены различными веществами — каротиноидами, феназиновыми производными, пирролами, антоциана-ми и др. Пигменты бактерий — вторичные метаболиты, то есть они не являются веществами, обязательно присутствующими у всех бактерий. Например, даже внутри одного вида Serratia mareescens есть пигментообразующие и беспигментные штаммы. Среди пигментов преобладают жёлтые, оранжевые и красные каротиноидные пигменты. Способность к пигментообразованию выражена у видов Sarcina, Micrococcus, Staphylococcus, Corynebacterium, Mycobacterium, Nocardia и др. Этот признак генетически детерминирован, поэтому его используют в качестве дифференцирующего критерия.

• Пигменты защищают бактерии от действия видимого света и УФ-лучей. Мутанты, лишённые способности к пигментообразованию, быстро погибают на свету. Искусственно окрашенные бактерии (например, метиленовым синим) также проявляют повышенную лабильность к инсоляции. Бактерицидное действие солнечного света проявляется в присутствии кислорода и обусловлено фотоокислением. При этом клеточные пигменты (флавины и цитохромы) действуют как катализаторы.

Каротиноиды ингибируют этот процесс. У некоторых бактерий образование пигментов происходит только на свету (например, каротиноидов у туберкулёзной палочки).

• Многие пигменты проявляют антибиотические свойства. Между пигментацией и образованием вторичных метаболитов существует такая тесная корреляция, что при наличии пигментов можно с большой долей вероятности ожидать образования антибиотиков и других БАВ.

Некоторые микроорганизмы (бактерии, грибы) в процессе обмена веществ образуют красящие вещества — пигменты. По химическому составу и свойствам пигменты неоднородны. Они подразделяются на растворимые в воде (синий пигмент — пиоцианин, выделяемый синегнойной палочкой); растворимые в спирте и нерастворимые в воде (красный пигмент — продигиозан, выделяемый чудесной палочкой); нерастворимые ни в воде, ни в спирте (черные и бурые пигменты дрожжей и плесеней).

Нерастворимые в воде пигменты (липохромы) обычно окрашивают колонии бактерий (например, желтый, золотистый, палевый пигменты стафилококков), а растворимые- окрашивают питательную среду (синегнойная палочка).

Образование пигментов у микробных клеток происходит на свету при достаточном доступе кислорода и определенном составе питательной среды.

Пигментообразование в ряде случаев является стойким признаком микроорганизмов, что позволяет использовать его в качестве теста для идентификации некоторых бактерий (например, стафилококки, синегнойная палочка).

Пигментообразование у микроорганизмов имеет определенное физиологическое значение. Пигменты защищают микробную клетку от природной ультрафиолетовой радиации, принимают участие в процессах дыхания, некоторые обладают антибиотическим действием (продигиозан).

Особый интерес представляет история чудесной палочки Serratia marcescens, которая образует на хлебе, картофеле и других продуктах, содержащих крахмал, красные колонии, похожие на капли свежей крови. Древнеримский историк Квинт Курций Руф в своей книге "История Александра Македонского" описал одну из его побед при покорении Малой Азии, связанную с этим удивительным микробом. В 332 г. до н. э. при осаде города Тироса в армии Александра Македонского произошло неприятное событие — в хлебе появились большие красные пятна, напоминающие пятна крови, и солдат охватил страх. Они посчитали это плохим предзнаменованием. Однако хитрый придворный мудрец Александра истолковал это "знамение" так: "Кровавые пятна действительно знак богов, но поскольку они находятся внутри запеченного хлеба, то это означает гибель войск, находящихся внутри осажденных стен города. Боги указывают на свою благосклонность войскам Александра и дают понять, что его победа обеспечена". Толкование мудреца так подняло дух армии, что солдаты с воодушевлением атаковали стены города и в скором времени захватили его.

Появление подобных красных пятен на продуктах во времена религиозных предрассудков и мракобесия средневековья широко использовалось церковниками для пропаганды "кары божьей" за неверие и служило основанием для жестокой расправы с вольнодумцами.

Источник: http://biofile.ru/bio/10417.html

Ссылка на основную публикацию